ANDREAS BLÜMEL (GÖTTINGEN)

A Uniform NP-Approach to (Poly-)Definiteness and Nominal Concord
An Uniform NP-Approach to (Poly-)Definiteness and Nominal Concord

Summary: This paper sketches aspects of a novel approach to the syntax of nominal phrases, based on Oishi 2014 and on Chomsky’s (2019) Hilbert epsilon operator (H₀) approach to adjunction. It shows how these components deliver a relatively simple, yet powerful syntax, with ingredients to unify phenomena as diverse as polydefiniteness (PD), non-PD, and nominal concord. Importantly, it is tailor-made for article-less language and avoids problems for the DP-hypothesis highlighted by Bruening (2009) regarding selectional asymmetries between the noun phrases and CPs. If tenable, it contributes to the goal of eliminating parameters from Narrow Syntax and delegating language-variation to externalization (cf. Berwick & Chomsky 2011; Obata & Epstein 2016; pace Bošković 2008).

Theoretical Background: A: Drawing on Chomsky (2007) and in an effort to work out parallels between phasal domains, Oishi (2014) assumes that (i) lexical categories are acategorical roots (R), (ii) phase heads (v, n, etc.) categorize Rs, (iii) the “affixes” v and n are invisible to the labeling algorithm (LA) (cf. Chomsky 2015), (iv) the amalgam <v/n, R> is visible to the LA, which is obtained by Internal Pair Merge (cf. Richards 2009) of R to the phase head, and (v) roots are visible to the LA, but “too weak” to label (Chomsky 2015). (iii)-(v) force R-to-n-raising to make possible that the set comprising the elements can be labeled at all, as in the derivation (1)/(2).

(1) \{n, R=author\} an unlabelable structure (R, too weak; n, invisible)
(2) \{<R=author, n>, R=author\} a structure labelable by the amalgam, an <R, n>P

I take n to come in two (purely formal, not semantically interpretable) flavors: n (indefinite) and n* (definite) (cf. Chomsky 2007). B: Addressing the issue of unstructured coordination (as in This guy is young, happy, eager to go to college, . . .), Chomsky (2019) unifies this construction with iterated adjunction phenomena by introducing the H₀. H₀ comprises selecting the elements functioning as adjuncts (X₁, . . . Xₙ), forming a sequence from them, namely Σ=(Y₁, . . . ,Yₙ), where the elements of the sequence are drawn from the set, but in any possible way. This, in turn, requires an operator K, either conjunction or disjunction. Specifically, H₀ involves forming a sequence of pairs comprising the adjunct (e.g., adjectives) and “a link” L, the Pair-Merge target (e.g., noun). H₀ aligns each Y with an instance of L, while the operator K specifies the logical connective as in (3). E.g., the part of a noun with attributive adjectives traditionally referred to as adjunction (like in the friendly old man) is rendered as in (4). Simplifying Chomsky’s (2019) proposal, I assume that Ns are <R, n*>, and As <R, a> (note that A can be phrasal and is, crucially, not a complement of D, as persuasively argued by Svenonius 1992; Mikkelsen & Hankamer 2005: 96 i.a.). (5) in turn, Pair Merges with the head noun to yield the full nominal phrase (cf. (5)).

(3) ⟨K, ⟨Y₁, L⟩ . . . ⟨Yₙ, L⟩⟩
(4) ⟨CONJ, ⟨A=friendly, n*⟩, ⟨A=old, n*⟩⟩
(5) ⟨⟨CONJ, ⟨A=friendly, n*⟩, ⟨A=old, n*⟩⟩, ⟨R=man, n*⟩⟩

We obtain a structure which roughly means: the man, and he is old, and he is friendly, reminiscent of the verbal counterpart of event semantics (cf. Davidson 1967).

Non-PD: The morphological realization of only one definite article in English preceding all adjectives is due to a language-specific rule. It determines that only the first A-n*-pair in the sequence realizes definiteness, i.e. the friendly spells out ⟨A=friendly, n*⟩, while none of the subsequent A-n*-pairs, and the noun, spell out definiteness. As for constituency
considerations, the current approach thus converges in spirit with Leu (2008, 2015) for languages like German. Moreover, the current approach recasts Lieb’s (2005: 1636 ff.) view that languages like English involve “analytical definite nouns,” i.e. a kind of periphrastic definiteness (but no syntactic D-head). This derives non-PD.

PD: Given this much, e.g. Hebrew PD receives a simple analysis. The syntax of an unmodified definite noun phrase is e.g. N=<R=yeled, n*=ha->, which is realized as ha-yeled (‘the boy’). Attributively modifying a definite noun as in [6] amounts to the analysis [8]. A morphological rule specific to Hebrew determines that each A-n-pair must spell out definiteness (next to N). It follows that obligatory “definiteness spread” emerges as the morphological form of definite adjectives. Modified indefinite nouns as [7] feature n – not n* – and do not give rise to any morphologically realized article-element.

(6) ha-yeled *(ha-)xaxam
 the-boy *(the-)smart
 ‘the boy’

(7) yeled (*ha-)xaxam
 boy (*DEF-)smart
 ‘a smart boy’

(8) ⟨(CONJ, ⟨A=xaxam, n*⟩), ⟨R=yeled, n*⟩⟩

Nominal Concord: Strong and weak adjectival declension in languages like German [9][10] receives a similar analysis (following previous unification approaches, cf. Leu 2015; Schoorlemmer 2012).

(9) (ein) gut-er Wein
 (a) good-STR wine
 ‘(a) good wine’

(10) d-er gut-e Wein
 d-STR good-WK win
 ‘the good wine’

(11) ⟨(CONJ, ⟨A=gut, n⟩), ⟨R=Wein, n⟩⟩
(12) ⟨(CONJ, ⟨A=gut, n*⟩), ⟨R=Wein, n*⟩⟩

An unmodified definite noun is ⟨R=Wein, n*⟩ which is spelled out der Wein morphologically due to the flavor of the phase head. An unmodified indefinite noun is ⟨R=Wein, n⟩. A modified indefinite noun, as in [9] comes about by a rule determining that the strong inflection n=–er in [12] seek a host. As the only pronounced host is the adjective, strong inflection follows. A modified definite noun, has as its underlying structure [11]. Morphologically, the definite article and the adjective (i.e. der gute) spell out the unit ⟨A=gut, n*⟩(cf. Leu 2008, 2015), again due to the flavor of the phase head n*, analogously to unmodified definite nouns. The current analysis sides with i. a. Norris (2014) in holding that nominal concord (as e.g. in Icelandic, [13]) is nothing like subject-verb agreement and does not involve AGREE.

(13) litl-ir snigl-ar
 little-NOM.M.PL snail-NOM.M.PL
 ‘little snails’

Assuming that next to definiteness, n* can host φ-features and Case, applying $\mathbb{H}e\sigma$ yields a proliferation of these features in each A-<R, n*>-pairing. Differences in the way languages morphologically manifest them are quite expected.